

Journal of Alloys and Compounds 311 (2000) 252-255

www.elsevier.com/locate/jallcom

Crystal structure of the high-pressure modification of NdTaO₄

Yu.A. Titov^{a,*}, A.M. Sych^a, A.N. Sokolov^b, A.A. Kapshuk^a, V.Ya. Markiv^a, N.M. Belyavina^a

^aTaras Shevchenko National University, 64, Volodymyrska str., 01033 Kyiv, Ukraine ^bInstitute for Superhard Materials, National Academy of Sciences, 2, Avtozavodska str., 04074 Kyiv, Ukraine

D 1 10 4 1 2000 1 24 M 2000

Received 8 April 2000; accepted 24 May 2000

Abstract

The crystal structure of the metastable NdTaO₄ high-pressure modification (HPM) has been studied by X-ray powder diffraction. It was found that the crystal structure of HPM NdTaO₄ belongs to the monoclinic LaTaO₄-type structure (space group $P2_1/c$, a=7.5920(7) Å, b=5.4673(5) Å, c=7.7022(7) Å, $\beta=100.032(6)^\circ$, Z=4). The difference in structure between LnTaO₄ with Ln=Nd-Lu (fergusonite-type structure) and that with Ln=La-Pr (monoclinic LaTaO₄-type structure) is most likely due to the difference in size of the rare-earth cations. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Polymorphism; Crystal structure; X-ray powder diffraction

1. Introduction

The tantalates $LnTaO_4$ (Ln=La-Pr), in which the ionic radius of Ln exceeds that of Nd, have two perovskite-like layered polymorphic modifications with monoclinic LaTaO₄-type structure [1–3] and BaMnF₄-type structure [3–6]. The other rare-earth orthotantalates (Ln=Nd-Lu) crystallise in M- and M¹-fergusonite structures [7]. The expected possibility of polymorphic transformation of $LnTaO_4$ (Ln=Nd-Lu) from the M-fergusonite type structure into a modification of the monoclinic LaTaO₄-type structure, reasoning from the principle of the highest atomic packing in the latter one, was realized in practice under high pressure conditions on an example of NdTaO₄

Table 1 Crystallographic data for HPM NdTaO₄ (monoclinic LaTaO₄-type structure)

Site	x	у	Z	Occupancy
4e	0.3462(3)	0.7746(11)	0.1010(4)	1.00
4e	0.1677(3)	0.2665(11)	0.3081(3)	1.00
4e	0.1525(44)	0.1093(62)	0.0644(39)	1.00
4e	0.0743(41)	0.6305(48)	0.2177(30)	1.00
4e	0.3971(41)	0.4334(48)	0.2880(39)	1.00
4e	0.3558(40)	-0.0063(62)	0.3789(36)	1.00
		$P2_{l}/c$ (no. 14)		
		a = 7.5920(7)		
		b = 5.4673(5)		
		c = 7.7022(7)		
		$\beta = 100.032^{\circ}(6)$		
		$d_{11} = 8.211$		
		$d_{aba} = 8.20$		
		289		
		0.17(2)		
		$R_{10} = 0.0419$		
		$R_{\rm m} = 0.0550$		
	Site 4e 4e 4e 4e 4e	Site x 4e0.3462(3)4e0.1677(3)4e0.1525(44)4e0.0743(41)4e0.3971(41)4e0.3558(40)	Site x y 4e 0.3462(3) 0.7746(11) 4e 0.1677(3) 0.2665(11) 4e 0.1525(44) 0.1093(62) 4e 0.0743(1) 0.6305(48) 4e 0.3971(41) 0.4334(48) 4e 0.3558(40) -0.0063(62) $P2_i/c$ (no. 14) a=7.5920(7) b=5.4673(5) c=7.7022(7) β =100.032°(6) d_{cal} =8.211 d_{obs} =8.20 289 0.17(2) R_{10} =0.0419 R_{w} =0.0550 R_{w} =0.0550	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

*Corresponding author.

[8]. The purpose of the present work is the crystal structure determination of the metastable high-pressure modification (HPM) of $NdTaO_4$.

E-mail address: ansok@europe.com (Yu.A. Titov).

Table 2 Part of the X-ray powder diffraction data for HPM NdTaO4 (Cu K α radiation)

$d_{\rm cal}({\rm \AA})$	$d_{\rm obs.}$ (Å)	$I_{\rm cal}$	$I_{\rm obs}$	hkl	$d_{\rm cal}({\rm \AA})$	$d_{\rm obs}$ (Å)	$I_{\rm cal}$	$I_{\rm obs}$	hkl
4.435	4.465	21	90	011	1.869	1.869	85	90	400
4.413	4.423	58		110	1.858		6		-123
3.997	_	0	_	-111	1.856	_	1	_	023
3.792	3.792	127	121	002	1.845	_	0	_	-321
3.738	3.741	193	186	200	1.842	1.841	10	18	320
3.655	_	2	_	111	1.839		5		-313
3.648	3.651	59	63	-102	1.831	_	2	_	213
3.167	3.169	61	63	1 02	1.827	1.827	250	283	222
3.116	3.118	853	847	012	1.824		18		-204
3.086	3.088	1000	993	210	1.823	_	3	_	312
3.035	3.036	331	343	-112	1.811	_	2	_	-114
3.013	3.012	19		-211	1.806	1.806	70	70	-402
2.929	2.932	135	130	-202	1.791	1.791	37	34	014
2.740	2.737	128	497	112	1.789		0		-411
2.734		361		020	1.772		19		031
2.725	_	3	_	211	1.771	_	2	_	130
2.582	2.582	178	207	-212	1.768	1.768	184	241	410
2.572		19		021	1.766		26		104
2.567		7		120	1.754	_	3	_	-223
2.492	_	4	_	300	1.750	_	0	_	123
2.477	2.481	6	8	-121	1.747	1.748	115	123	-322
2.457	2.457	171	173	202	1.740	_	5		-131
2.389	_	5	_	121	1.739	_	0	_	321
2.298	2.297	23	22	-113	1.730	_	6	_	-214
2.295		1		013	1.715	1.715	9	9	-412
2.274	2.272	4	116	-311	1.709	_	0	_	131
2.272		95		-302	1.681	1.681	138	148	114
2.268		9		310	1.663	1.663	3	7	411
2.241	2.244	15	10	212	1.654	1.655	15	10	-304
2.218	2.218	34	31	022	1.643	1.642	111	272	032
2.207	2.207	91	95	220	1.638	1.639	146		230
2.188	2.188	27	20	-122	1.630	1.630	45	77	-132
2.180		3		-221	1.627		25		-231
2.110	_	0	-	-213	1.589	1.588	6	8	-323
2.102	2.103	11	14	113	1.584		3		223
2.098		4		-312	1.583	1.583	1	148	204
2.084	_	0	-	311	1.583		140		-314
2.069	2.070	61	99	122	1.580		32		132
2.063	2.062	32		221	1.579	1.579	29	67	322
1.999	1.999	137	145	-222	1.577		4		231
1.934	1.933	26	24	302	1.576		0		-413
1.919	1.919	173	179	-104	1.571		20		402
1.896	1.896	15	14	004	1.571	1.571	131	151	-124

2. Experimental

HPM NdTaO₄ was obtained in a high pressure apparatus of the anvil type with recess in toroidal form (cell from lithographic stone with graphite heater) by exposing the M-fergusonite modification NdTaO₄ to high pressure (8×10^9 Pa) and temperature (1500°C) within 1 min. The samples were quenched at a cooling rate of 500°C/s under pressure, ground into a powder and then annealed in air (600°C, 3 h).

The crystal structure of HPM $NdTaO_4$ has been studied by X-ray powder diffraction. The diffraction diagram was detected in a discrete regime (step scan 0.03°, counting time per step 8 s) with filtered copper radiation. Process control of shooting, data collection, primary processing of the diffraction pattern and the structural calculations were carried out using a hardware–software complex [9].

3. Results

The indexing of the powder diffraction pattern of HPM NdTaO₄ led to monoclinic symmetry. The monoclinic unit cell parameters of HPM NdTaO₄ were found to be slightly different from those listed in Ref. [8]. Taking into account the systematic extinctions, the space group of HPM NdTaO₄ was determined as $P2_1/c$.

The initial position parameters of each atom in HPM

Table 3				
Selected interatomic distances (not	exceeding 3.0 Å) in the crystal	structures of LaTaO. CeTaC), monoclinic modifications and	HPM NdTaO.

Polyhedron	Atom-Atom	d, Å				
		LaTaO ₄ [1]	CeTaO ₄ [2]	HPM NdTaO $_4$		
TaO ₆	Ta–O(1)	2.05(3)	2.032(5)	2.049(31)		
	Ta-O(1)	2.00(3)	1.980(5)	2.110(32)		
	Ta-O(2)	2.07(3)	2.041(4)	2.185(26)		
	Ta-O(2)	1.94(3)	1.960(5)	1.960(30)		
	Ta-O(3)	2.01(3)	2.013(4)	1.996(31)		
	Ta–O(4)	1.91(3)	1.914(5)	2.071(32)		
	(Ta-O) _{av}	2.00	1.990	2.062		
	$(Ta-O)_{max} - (Ta-O)_{min}$	0.16	0.13	0.23		
LnO ₈	Ln–O(1)	2.49(3)	2.518(5)	2.334(34)		
	Ln-O(2)	2.74(3)	2.688(6)	2.517(31)		
	Ln-O(3)	2.43(3)	2.380(5)	2.347(28)		
	$Ln-O(3)^{a}$	2.40(3)	2.361(5)	2.168(29)		
	Ln-O(3)	2.52(3)	2.545(6)	2.972(30)		
	Ln-O(4)	2.47(3)	2.464(5)	2.443(29)		
	$Ln-O(4)^{a}$	2.84(3)	2.826(6)	2.717(32)		
	Ln-O(4)	2.41(3)	2.375(5)	2.264(31)		
	(Ln-O) _{av}	2.54	2.52	2.47		
	$(Ln-O)_{max}^{max} - (Ln-O)_{min}$	0.44	0.465	0.80		

^a These are the interblock Ln-O distances.

NdTaO₄ were estimated from those in the monoclinic modification of LaTaO₄ (space group $P2_1/c$ [1]). A comparison of the observed and the calculated intensities shows a good agreement for this structure model. The results of the refinement procedure and diffraction data are reported in Tables 1–3, and are shown in Figs. 1 and 2.

The crystal structure of HPM NdTaO₄ is formed by two-dimensional perovskite-like blocks, each of them consisting of two goffered slabs of deformed TaO₆ octahedrons (Ta–O distances ranging from 1.960(30) to 2.185(26) Å). Each TaO₆ octahedron has four common vertices with adjacent octahedrons within the same block (Fig. 2). The difference in TaO_6 octahedron distortion between the HPM NdTaO₄ structure and monoclinic LaTaO₄ and CeTaO₄ consists mainly in the increasing (0.27 Å in comparison with LaTaO₄) length of the octahedron diagonal O(2)–Ta–O(4) and height (0.11 Å).

The direct connection between TaO_6 octahedrons with neighbouring perovskite-like blocks is absent. They are linked by means of interblock bonds -O-Nd-O-. The necessity of such bond formation is caused by Nd atom displacements from cubooctahedral type holes almost to the boundary of the perovskite-like block. Therefore their coordination number is reduced to 8. The Nd atom is

Fig. 1. Part of the X-ray diffraction powder pattern (points) and calculated pattern (solid line) for HPM NdTaO₄ (Cu Kα radiation).

Fig. 2. Projection of the HPM NdTaO₄ structure on the XY plane.

surrounded by six oxygen atoms (one O(1), one O(2), two O(3) and two O(4)) in the same block and two oxygen atoms (O(3), O(4)) in the neighbouring block at distances ranging from 2.168(29) to 2.972(30) Å (Table 3). The next ninth oxygen atom is separated from Nd by 3.34 Å.

The coordination number of the oxygen atoms is 3 for O(1), O(2) and 4 for O(3), O(4). The first two are bonded to two Ta atoms and one Nd atom, whereas the other two are bonded to one Ta and three Nd atoms.

According to Refs. [1,2] the formal balance of valencies for the representatives of monoclinic LaTaO₄ structural type is almost ideal. The deviations of valency from the valency of oxygen is 2%. Such values indicate that only a small part of the distortion is needed to balance the electrostatic charge.

At the same time, the degree of distortion (the range of interatomic Me–O distances) of the TaO_6 and especially the LnO_8 polyhedrons in the structure of HPM NdTaO₄ appeared to be much greater than those in the compounds $LnTaO_4$. The latter are formed under conditions of ambient

pressure and containing atoms larger than Nd in the A-position (LaTaO₄, CeTaO₄).

From the above, it follows that the change in structural type of $LnTaO_4$, which takes place while passing from $PrTaO_4$ (monoclinic $LaTaO_4$ -type structure) to $NdTaO_4$ (M-fergusonite type structure) is caused mainly by the size of the Ln cations. Their mismatch with the sizes of the holes in the monoclinic $LaTaO_4$ -type structure, that increase with R_{Ln} decreasing, leads to the necessity of the enormous distortion of the LnO_8 and TaO_6 polyhedrons. That is why the formation of $LnTaO_4$ with the monoclinic $LaTaO_4$ -type structure, beginning from Ln=Nd, became possible only under conditions of high pressure.

4. Conclusion

The novel HPM NdTaO₄ was characterised by X-ray powder diffraction. It was found that the crystal structure of HPM NdTaO₄ belongs to the monoclinic LaTaO₄-type structure. The degree of distortion of LnO₈ and TaO₆ polyhedrons in the structure of HPM NdTaO₄ is higher than in the monoclinic LaTaO₄ and CeTaO₄.

References

- T.A. Kurova, V.B. Aleksandrov, Dokl. Akad. Nauk SSSR 201 (1971) 1095.
- [2] A. Santoro, M. Marezio, R.S. Roth, D. Minor, J. Solid State Chem. 35 (1980) 167.
- [3] R.S. Roth, T. Negas, H.S. Parker, D. Minor, C. Jones, Mater. Res. Bull. 12 (1977) 1173.
- [4] R.J. Cava, R.S. Roth, J. Solid State Chem. 36 (1981) 139.
- [5] Yu.A. Titov, A.M. Sych, A.A. Kapshuk, Neorganicheskie Materialy 34 (1998) 608.
- [6] Yu.A. Titov, Dop. Nat. Akad. Nauk Ukrainy 11 (1999) 140.
- [7] H.P. Rooksby, E.A.D. White, Acta Crystallogr. 16 (1963) 888.
- [8] Yu.A. Titov, A.M. Sych, A.N. Sokolov, A.A. Kapshuk, V.P. Yashchuk, Neorganicheskie Materialy 33 (1997) 67.
- [9] V. Markiv, N. Belyavina, in: Proceedings of the Second International Scientific Conference of Engineering and Functional Materials, EFM-97, Lviv, 14–16 October, 1997, p. 260.